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Abstract 

Background Being one of the most widespread, pervasive, and troublesome illnesses in the world, depression 
causes dysfunction in various spheres of individual and social life. Regrettably, despite obtaining evidence-based 
antidepressant medication, up to 70% of people are going to continue to experience troublesome symptoms. Que-
tiapine, as one of the most commonly prescribed antipsychotic medication worldwide, has been reported as an effec-
tive augmentation strategy to antidepressants. The right quetiapine dose and personalized quetiapine treatment are 
frequently challenging for clinicians. This study aimed to identify important influencing variables for quetiapine dose 
by maximizing the use of data from real world, and develop a predictive model of quetiapine dose through machine 
learning techniques to support selections for treatment regimens.

Methods The study comprised 308 depressed patients who were medicated with quetiapine and hospitalized 
in the First Hospital of Hebei Medical University, from November 1, 2019, to August 31, 2022. To identify the important 
variables influencing the dose of quetiapine, a univariate analysis was applied. The prediction abilities of nine machine 
learning models (XGBoost, LightGBM, RF, GBDT, SVM, LR, ANN, DT) were compared. Algorithm with the optimal model 
performance was chosen to develop the prediction model.

Results Four predictors were selected from 38 variables by the univariate analysis (p < 0.05), including quetiapine 
TDM value, age, mean corpuscular hemoglobin concentration, and total bile acid. Ultimately, the XGBoost algorithm 
was used to create a prediction model for quetiapine dose that had the greatest predictive performance (accu-
racy = 0.69) out of nine models. In the testing cohort (62 cases), a total of 43 cases were correctly predicted of the que-
tiapine dose regimen. In dose subgroup analysis, AUROC for patients with daily dose of 100 mg, 200 mg, 300 mg 
and 400 mg were 0.99, 0.75, 0.93 and 0.86, respectively.

Conclusions In this work, machine learning techniques are used for the first time to estimate the dose of quetiapine 
for patients with depression, which is valuable for the clinical drug recommendations.

Keywords Quetiapine, Machine learning, Dose, Prediction model, Depression

†Yupei Hao and Jinyuan Zhang have contributed equally to this work.

*Correspondence:
Fei Gao
gaofei9000@163.com
Chunhua Zhou
zhouchunhua80@126.com
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12991-023-00483-w&domain=pdf


Page 2 of 13Hao et al. Annals of General Psychiatry            (2024) 23:5 

Background
Depression is a severe affective mental disorder that is 
accompanied by a lack of pleasure, and the impairment 
of cognition, behavior and autonomic nerve function, 
which causes dysfunction in various spheres of individ-
ual and social life, severely limits psychosocial function-
ing, and diminishes quality of life [1, 2]. Being one of the 
most widespread, pervasive, and troublesome illnesses in 
the world [3–5], depression can affect individuals of any 
age. By 2020, depression is anticipated to overtake heart 
disease as the second-leading cause of disability or early 
death, according to estimates from the World Health 
Organization (WHO) [6]. As a common and disabling 
mental disorder [7], it is a serious global public health 
issue that not only results in personal misery for those 
affected but also places a large economic burden on both 
the patients and the entire society [8, 9]. When it comes 
to medicinal therapy for depressive disorders, the Ameri-
can Psychiatric Association recommends selective sero-
tonin reuptake inhibitors (SSRI, such as sertraline) and 
serotonin–norepinephrine reuptake inhibitors (SNRI, 
such as duloxetine), as well as noradrenergic and specific 
serotonergic antidepressants (NaSSA, such as mirtazap-
ine) [10, 11]. Regrettably, despite obtaining evidence-
based antidepressant medication, up to 70% of people are 
going to continue to experience troublesome symptoms 
[12, 13].

According to the Canadian Network for Mood and 
Anxiety Treatments (CANMAT) guidelines and Ameri-
can Psychiatric Association Practice guidelines, atypical 
antipsychotics (AA), specifically the use of quetiapine has 
been reported as an effective augmentation strategy to 
antidepressants. Quetiapine is an atypical antipsychotic 
agent, which was first introduced in the pharmaceuti-
cal market in 1997 [14]. In 2010, the European Medicine 
Agency (EMA) approved the extended-release formula-
tion of the drug, quetiapine XR, as an add-on to antide-
pressants when monotherapy gives suboptimal response 
[15]. Studies have shown that quetiapine (mean dose, 
156.74 ± 97.6  mg/day) showed significant benefits for 
both response and remission rates compared to placebo 
[16, 17]. Despite its high effectiveness, its optimal use is 
limited by widely variant individual factors, including 
height, weight, age, medical history, and the CYP3A4 
and CYP2D6 enzymes and so on [18]. Before achieving 
the quetiapine maintenance dose, these influencing fac-
tors make it challenging to reach the narrow therapeu-
tic window, which is monitored by the therapeutic drug 
monitoring from AGNP and a sub- or supra-therapeutic 
recommended therapeutic reference range (200–750 ng/
ml). This may render treatment ineffective or increase the 
risk of sedation, hypotension, dry mouth, constipation, 

and tachycardia. Therefore, it is critical to help clinicians 
select the appropriate quetiapine dose and individualized 
quetiapine treatment using prediction models.

Recently, there has been a trend toward using machine 
learning and deep learning methods to create customized 
medications based on research from real-world situations 
[19]. With the help of large-scale complex algorithms and 
datasets, machine learning and deep learning algorithms, 
a branch of artificial intelligence, are able to predict clini-
cal outcomes with high accuracy [20, 21]. When predict-
ing from a variety of variables, they can assess data-driven 
estimation and derive nonlinear variable linkages [20, 21]. 
Several studies have utilized machine learning and deep 
learning approaches to improve the model depiction of 
the complex link between individual characteristics and 
drug dose, such as a vancomycin treatment prediction 
system using Extreme Gradient Boosting (XGBoost) [22], 
and a brand-new warfarin maintaining dose prediction 
system using Light Gradient Boosting Machine (Light-
GBM) [23].

Herein, our goal was to build a prediction model of 
quetiapine adjusted dose in a stationary state using algo-
rithms based on machine learning and deep learning to 
support clinical prescription decisions. We did this by 
maximizing the use of real-world data to find significant 
influencing variables for quetiapine dose.

Methods
Patients and data
We included 474 patients with depression, who were 
treated with quetiapine and hospitalized in the First Hos-
pital of Hebei Medical University, from November 1, 
2019, to August 31, 2022.

The inclusion criteria included the following: (1) 
patients who were diagnosed with depression and (2) 
patients who took quetiapine orally for a long time (at 
least for 3 days) at the same dose, and the blood con-
centration reached steady state at the time of blood 
collection. The exclusion criteria were as following: (1) 
patients older than 60 years were deleted; (2) patients 
with missing information (e.g., patient ID, medication 
record, etc.) were deleted; (3) samples that contained 
quetiapine at levels below the lower limit of quantifi-
cation of 20 ng·ml−1 were eliminated; and (4) patients 
who were diagnosed with organic mental disorders 
or took psychoactive drug substance were deleted. 
The International Classification of diseases-10 (ICD-
10) was used for diagnosis, and the supervising doc-
tor made a diagnosis of depression. According to the 
Chinese Guidelines for the Diagnosis and Treatment 
of Mental Disorders 2020 Edition, antidepressants 
should be used as single as possible for patients with 
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depression. When changing medicine is ineffective, 
combination therapy may be considered. The combi-
nation of two antidepressants with different mecha-
nisms of action can be used, and other combinations 
include the combination of second-generation antipsy-
chotics and lithium [24]. The First Hospital of Hebei 
Medical University is a tertiary hospital in local, and 
most of the patients who admitted in our hospital had 
poor effect after single antidepressant treatment and 
changing medicines in primary hospitals. Therefore, 
depending on the patient’s condition and guidelines, 
antidepressants combined with second generation 
antipsychotics (such as quetiapine) were commonly 
prescribed. Herein, the primary purpose of using que-
tiapine is the synergistic treatment of depression. All 
data were gathered from clinical paper records and 
computerized medical records held by the hospital 
for patients. Eventually, 308 eligible individuals were 
enrolled in this study. Figure 1 provides an illustration 
of the sample selection workflow.

Data collection and processing
Figure  2 provides an illustration of data collecting and 
processing. First, based on the database’s available data, 
we collected 47 clinical variables, including quetiapine 
administration information (e.g., daily dose and con-
centration), demographic information (e.g., age, gender, 
weight, height), comorbidities (e.g., hypertension, dia-
betes, hyperlipidemia), combination medication (e.g., 
CYP3A4 enzyme inhibitors, and CYP2D6/CYP3A4 
competitive substrates) and laboratory parameters (e.g., 
regular blood test, liver function, and renal function). 
Considering the missing rates or extremely unbalanced 
variables, we preprocessed the obtained data, and the 
variables’ missing values were filled with the mean.

Variable selection and model establishment
As depicted in Fig.  2, univariate analysis was used to 
screen the variables after data collection from all rel-
evant samples. Ultimately, variables which had p < 0.05 
were selected. Based on the final dataset, the whole 

Fig. 1 Workflow of sample selection
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dataset was randomly divided into training cohort and 
testing cohort at the ratio of 80%: 20%. The data of the 
training cohort is used to train the model, and the test 
cohort is used to verify the final effect of the model. In 
this study, 246 subjects were in the training cohort and 
62 subjects were in the testing cohort. Following that, 
key variables with p < 0.05 were chosen, and the daily 
dose of quetiapine was defined as the target variable. 
We created and evaluated nine different machine learn-
ing and deep learning models to compare the prediction 
abilities, including XGBoost, LightGBM, Random For-
est (RF), Gradient Boosting (GBDT), Artificial Neural 
Network (ANN), Lasso Regression (LR), Support Vec-
tor Machine (SVM), TabNet and Decision Tree (DT). 
Assessment indicators were used for model evaluation, 
including precision, recall, F1-score, accuracy, sensitiv-
ity, and specificity. At the same time, we evaluated the 
effectiveness (AUROC) of quetiapine at various doses 
(100 mg/d, 200 mg/d, 300 mg/d, and 400 mg/d). Among 
these evaluation indicators, precision denotes the pro-
portion of false positives [25]. Recall/sensitivity measures 
false negatives against true positives [25]. The F1-score 
is the harmonic average of the precision and recall [25]. 
Specificity measures false positives against true nega-
tives [25]. The area under the ROC curve, or AUROC, is a 
comprehensive measurement that reflects the sensitivity 
and specificity of continuous variables. Accuracy is the 
proportion of correct predictions over the output results 
[25]. By contrasting the models’ overall average accuracy, 

we may assess how well these models perform in terms of 
classification. After that, the confusion matrix, a special 
table used to view a classification model’s performance, 
was then used to evaluate the prediction findings [26]. 
To avoid model overfitting and reduce bias, we used grid 
search combined with tenfold cross validation for hyper-
parameter tuning. Parameters of all nine models are dis-
played in Additional file 2: Table S1.

Statistical analysis
IBM SPSS version 26.0 was used for statistical research. 
(IBM Corporation, Armonk, New York, USA). In the 
comparison between training cohort and testing cohort, 
Mann–Whitney U test (non-normal distribution) and 
independent t test (normal distribution) were used to 
analyze the various continuous factors. Categorical data 
were analyzed by the Chi-squared test (n ≥ 5) or Fish-
er’s exact test (n < 5). Statistical significance was set at p 
value < 0.05. Windows Python 3.9.12 was used to create 
each machine learning model.

Results
Baseline information
Table  1 displays the distribution of features across the 
complete dataset. This research included 308 depressed 
patients in total, 131 of whom were men and 177 of 
whom were women. Median (interquartile range, IQR) 
was used to characterize continuous variables, and fre-
quency (percentage, %) was used to describe categorical 

Fig. 2 Process for establishing models and analyzing data
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Table 1 Description of the study samples

Category Variable Median (IQR) | n(%) Miss rate

Quetiapine information TDM value, ng·ml−1, median (IQR) 213.06 (124.23–370.24) 0.00%

Daily dose, median (IQR) 0.00%

100 (1) 57 (18.51%)

200 (2) 108 (35.06%)

300 (3) 74 (24.03%)

400 (4) 69 (22.40%)

Demographic information Age, median (IQR) 19.00 (15.00–36.25) 0.00%

Sex, n (%) 0.00%

Female 177 (57.47%)

Male 131 (42.53%)

Weight, kg, median (IQR) 65.00 (55.00–76.00) 52.92%

Height, cm, median (IQR) 166.00 (160.00–172.00) 53.25%

Concomitant diseases Hypertension, n (%) 26 (8.44%) 0.00%

Diabetes, n (%) 10 (3.25%) 0.00%

Hyperlipidemia, n (%) 22 (7.14%) 0.00%

Combination medication CYP3A4 enzyme inhibitors, n (%) 1 (0.32%) 0.00%

CYP3A4 competitive substrates, n (%) 16 (5.19%) 0.00%

CYP2D6 competitive substrates, n (%) 30 (9.74%) 0.00%

Laboratory parameters AFU, U/L, median (IQR) 17.20 (14.05–20.20) 9.42%

α-HBDH, U/L, median (IQR) 100.00 (89.05–114.00) 24.03%

GGT, U/L, median (IQR) 17.00 (13.00–28.00) 3.57%

ALT, U/L, median (IQR) 16.20 (10.30–29.10) 3.57%

NEUR, %, median (IQR) 51.25 (45.85–59.35) 5.19%

LDH, U/L, median (IQR) 158.00 (142.25–178.00) 24.03%

MONOR, %, median (IQR) 8.05 (6.50–9.40) 5.19%

BASOR, %, median (IQR) 0.40 (0.30–0.60) 10.06%

EOSR, %, median (IQR) 2.50 (1.70–3.60) 10.06%

AST, U/L, median (IQR) 18.50 (15.40–22.90) 3.57%

BUN, mmol·L−1, median (IQR) 3.96 (3.15–4.57) 3.57%

UA, µmol·L−1, median (IQR) 332.45 (276.80–401.45) 3.25%

MCV, fl, median (IQR) 88.60 (85.55–92.03) 5.19%

MPV, fl, median (IQR) 8.70 (8.00–9.50) 5.19%

MCHC, g·L−1, median (IQR) 338.00 (331.00–345.00) 5.19%

MCH, pg, median (IQR) 30.20 (28.80–31.20) 5.19%

TBA, µmol·L−1, median (IQR) 3.00 (1.98–5.00) 1.30%

TBIL, µmol·L−1, median (IQR) 8.50 (6.80–10.93) 1.30%

TP, g·L−1, median (IQR) 65.10 (63.00–68.95) 1.30%

LYP, %, median (IQR) 35.25 (28.55–40.75) 5.19%

LYM,  109/L, median (IQR) 2.00 (1.64–2.40) 5.19%

GLB, g·L−1, median (IQR) 24.40 (22.40–26.80) 1.30%

AIB/GLB, median (IQR) 1.68 (1.52–1.85) 1.30%

WBC,  109/L, median (IQR) 5.90 (4.97–6.80) 5.19%

AIB, g·L−1, median (IQR) 40.70 (39.00–43.00) 1.30%

DBIL, µmol·L−1, median (IQR) 1.70 (1.30–2.30) 1.30%

HCT, %, median (IQR) 37.80 (34.90–41.70) 5.19%

RBC,  1012/L, median (IQR) 4.34 (4.03–4.70) 5.19%

Cr, µmol·L−1, median (IQR) 60.30 (53.50–72.70) 3.57%

CK, U/L, median (IQR) 71.00 (52.00–101.75) 24.03%

ChE, U/L, median (IQR) 7524.00 (6640.75–8536.00) 1.30%
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variables. Patients’ average age was 19.00 (IQR 15.00–
36.25) years. The median height and weight were 166.00 
(IQR 160.00–172.00) cm and 65.00 (IQR 55.00–76.00) kg. 
Based on their daily quetiapine dose, the patients were 
separated into several groups, with 57 (18.51%) receiv-
ing a dose of 100  mg, 108 (35.06) receiving a dose of 
200  mg, 74 (24.03%) receiving a dose of 300  mg, and 
69 (22.03%) receiving a dose of 400  mg. The median 
value of the serum levels in the dataset was 213.06 (IQR 
124.23–370.24) ng·ml−1. Comorbidities including hyper-
tension, diabetes, and hyperlipidemia occupied 8.44%, 
10.00%, and 7.14%, respectively. Combination medi-
cine usage rates for CYP3A4 enzyme inhibitors were 
0.32%, CYP3A4 competitive substrates were 5.19%, and 
CYP2D6 competitive substrates were 9.74%.

Variable analysis
Considering extremely unbalanced variables, including 
hypertension, diabetes, hyperlipidemia, CYP3A4 enzyme 
inhibitors/inducers/competitive substrates, CYP2D6 
enzyme inhibitors/competitive substrates, and variables 
with a missing rate greater than 50%, including weight, 
height may influence the predicted results of quetiapine, 
we preprocessed the obtained data before determining 
the significant associations between univariates. This 
led to a total of 38 candidate predictors, and finally four 
variables were selected which had p < 0.05, including 
quetiapine TDM value, age, mean corpuscular hemo-
globin concentration (MCHC), and total bile acid (TBA), 
described in Table 2.

Model establishment and validation
We developed and validated prediction models based on 
the selected features using nine algorithms (including 
XGBoost, LightGBM, RF, GBDT, SVM, LR, ANN, Tab-
Net, and DT). Table 3 displays the performance of these 
models in testing cohort. The metrics of the XGBoost 
model outperformed those of other models and achieved 
the best overall performance, with precision = 0.91 ± 0.07, 

recall = 0.68 ± 0.1, F1 score = 0.78 ± 0.09, 
AUROC = 0.93 ± 0.04, sensitivity = 0.68 ± 0.1, and speci-
ficity = 0.98 ± 0.01 for predicting the daily dose of 100 mg 
quetiapine; precision = 0.67 ± 0.05, recall = 0.76 ± 0.09, 
F1 score = 0.71 ± 0.03, AUROC = 0.77 ± 0.04, sensi-
tivity = 0.76 ± 0.09, and specificity = 0.78 ± 0.05 for 
predicting the daily dose of 200  mg quetiapine; preci-
sion = 0.67 ± 0.17, recall = 0.47 ± 0.09, F1 score = 0.54 ± 0.1, 
AUROC = 0.77 ± 0.08, sensitivity = 0.47 ± 0.09, and speci-
ficity = 0.93 ± 0.04 for predicting the daily dose of 300 mg 
quetiapine; precision = 0.64 ± 0.1, recall = 0.79 ± 0.08, 
F1 score = 0.7 ± 0.07, AUROC = 0.86 ± 0.06, sensitiv-
ity = 0.79 ± 0.08, and specificity = 0.86 ± 0.05 for pre-
dicting the daily dose of 400  mg quetiapine, and 
accuracy = 0.69 ± 0.03 for the entire XGBoost model. As 
a result, XGBoost was chosen to forecast the daily dose 
of quetiapine.

On this basis, XGBoost calculated and ranked the 
importance scores of four selected variables, as shown 
in Table 4. Among them, the most important feature in 
the prediction model was discovered to be the quetia-
pine TDM value (importance score = 0.41 ± 0.02), fol-
lowed by AGE (importance score = 0.23 ± 0.01), MCHC 
(importance score = 0.19 ± 0.01) and TBA (importance 
score = 0.18 ± 0.01).

Then, we evaluated the performance of XGBoost model 
with 4 variables (quetiapine TDM value, AGE, MCHC, 
and TBA) using a testing cohort of 62 patients. Figure 3 
shows the AUROC values for XGBoost under different 
groups according to the daily dose of quetiapine. Typi-
cally, an AUROC has a value between 0.5 and 1.0, and the 
larger AUROC indicates the greater model classification 
effect. Based on different dose intervals, the patients were 
separated into four subgroups: those with a daily dose of 
100 mg (11 cases), 200 mg (23 cases), 300 mg (14 cases), 
and 400 mg (14 cases). In different subgroups according 
to the quetiapine daily dose of 100 mg, 200 mg, 300 mg 
and 400  mg, AUROC were 0.99, 0.75, 0.93, and 0.86, 
respectively.

Table 1 (continued)

Category Variable Median (IQR) | n(%) Miss rate

ADA, U/L, median (IQR) 9.50 (7.90–11.65) 9.42%

PLT,  109/L, median (IQR) 238.00 (199.75–277.25) 5.19%

Hb, g·L−1, median (IQR) 130.00 (118.00–142.00) 5.19%

IBIL, µmol·L−1, median (IQR) 6.90 (5.40–8.90) 1.30%

AFU a-L-fucosidase, HBDH alpha-hydroxybutyrate dehydrogenase, GGT  γ-glutamyl transpeptidase, ALT alanine aminotransferase, NEUR percentage of neutrophils, LDH 
lactic dehydrogenase, MONOR percentage of monocytes, BASOR percentage of basophilic granulocyte, EOSR percentage of eosinophils granulocyte, AST aspartate 
aminotransferase, ALT alanine aminotransferase, BUN blood urea nitrogen, UA uric acid, MCV mean corpuscular volume, MPV mean platelet volume, MCHC mean 
corpuscular hemoglobin concentration, MCH mean corpuscular hemoglobin, TBA total bile acid, TBIL total bilirubin, TP total protein, LYP percentage of lymphocytes, 
GLB globulin, WBC white blood cells, AIB albumin, DBIL direct bilirubin, RDW Red cell distribution width, HCT hematocrit, RBC red blood cell count, Cr creatinine, CK 
creatine kinase, ChE cholinesterase, ADA adenosine deaminase, Hb hemoglobin, IBIL Indirect Bilirubin



Page 7 of 13Hao et al. Annals of General Psychiatry            (2024) 23:5  

Figure  4 summarizes the model’s performance in the 
testing cohort (62 cases) through confusion matrix. The 
model accurately predicted the dose regimen of 100 mg, 
200 mg, 300 mg, and 400 mg quetiapine for 9, 15, 9, and 
10 individuals, respectively. The evaluation indicators of 
four subgroups in the XGBoost model were calculated. 
The model can predict the dose regimen of 100 mg que-
tiapin with 100% precision and 82% recall rate; the dose 
regimen of 200  mg with 75% precision and 65% recall 
rate; the dose regimen of 300 mg with 69% precision and 
64% recall rate; and the dose regimen of 400 mg with 50% 
precision and 71% recall rate, respectively. The results 
showed that the predicted quetiapine dose metrics 
agreed well with those from the clinically delivered plans 
for these patients.

Discussion
One of the most popular and efficient ways to treat 
depression in a therapeutic context is with antidepres-
sants, which also has the ability to successfully slow the 
onset of disease in depressed patients. However, research 
indicates that only about half of major depressive disor-
der (MDD) patients receive antidepressants that work 
well for them, and only about a third of them experience 
remission [27]. The use of AAs as first-line medicines, 
notably quetiapine, is recommended by various current 
pharmacological augmentation guidelines for treating 
depression [17, 28, 29]. The right quetiapine dose and 
personalized quetiapine treatment are frequently chal-
lenging for clinicians.

To better estimate quetiapine dose during depression 
treatment and to find valid and accurate predictors, we 
compared the prediction abilities of quetiapine dose 
by applying nine machine learning and deep learning 
techniques for patients with depression. Ultimately, the 
XGBoost algorithm with the best performance (accu-
racy = 0.69) among nine models was selected to build 
the prediction model. Afterward, it can be observed that 
a number of 43 instances of quetiapine dose were prop-
erly predicted in the testing cohort. The overall accuracy 
of the model was 0.69. The moderate accuracy demon-
strates that the effect of accurately predicting quetiapine 
dose is acceptable, and our findings may offer clinicians 
recommendations for prompt drug regimen adjustments. 
In addition, we performed dose subgroup analyses to 
show individual predictive performance across dose lev-
els and to help refine model performance with continued 
recruitment of data for a given range of daily doses.

Calculations of the area under the concentration–time 
curve (AUC), for instance, provide the basis of classic 

Table 2 Outcomes of the univariate analysis

AFU a-L-fucosidase, HBDH alpha-hydroxybutyrate dehydrogenase, GGT  
γ-glutamyl transpeptidase, ALT alanine aminotransferase, NEUR percentage 
of neutrophils, LDH lactic dehydrogenase, MONOR percentage of monocytes, 
BASOR percentage of basophilic granulocyte, EOSR percentage of eosinophils 
granulocyte, AST aspartate aminotransferase, ALT alanine aminotransferase, BUN 
blood urea nitrogen, UA uric acid, MCV mean corpuscular volume, MPV mean 
platelet volume, MCHC mean corpuscular hemoglobin concentration, MCH 
mean corpuscular hemoglobin, TBA total bile acid, TBIL total bilirubin, TP total 
protein, LYP percentage of lymphocytes, GLB globulin, WBC white blood cells, AIB 
albumin, DBIL direct bilirubin, RDW Red cell distribution width, HCT hematocrit, 
RBC red blood cell count, Cr creatinine, CK creatine kinase, ChE cholinesterase, 
ADA adenosine deaminase, Hb hemoglobin, IBIL Indirect Bilirubin

Variable Statistic p value

SEX 0.212 0.976

TDM VALUE 139.612  < 0.001

AGE 32.840  < 0.001

AFU 3.116 0.374

α-HBDH 2.329 0.507

GGT 3.155 0.368

ALT 5.561 0.135

NEUR 1.287 0.732

LDH 2.695 0.441

MONOR 1.740 0.628

BASOR 3.328 0.344

EOSR 0.466 0.926

AST 1.046 0.790

BUN 3.491 0.322

UA 5.899 0.117

MCV 3.846 0.279

MPV 3.921 0.270

MCHC 7.699 0.053

MCH 6.508 0.089

TBA 8.216 0.042

TBIL 3.471 0.325

TP 2.146 0.543

LYP 1.672 0.643

LYM 2.338 0.505

GLB 4.594 0.204

AIB/GLB 5.506 0.138

WBC 1.114 0.774

AIB 3.067 0.381

DBIL 2.436 0.487

HCT 0.854 0.837

RBC 0.232 0.972

Cr 5.646 0.130

CK 1.766 0.622

ChE 2.736 0.434

ADA 5.345 0.148

PLT 1.564 0.667

Hb 1.242 0.743

IBIL 4.974 0.174
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Table 3 Nine different algorithms’ model performance metrics

Label 0 indicates patients with daily dose of 100 mg, Label 1 indicates patients with daily dose of 200 mg, Label 2 indicates patients with daily dose of 300 mg, and 
Label 3 indicates patients with daily dose of 400 mg

Model label precision recall f1-score support AUROC sensitivity specificity accuracy

XGBoost 0.69 ± 0.03

0 0.91 ± 0.07 0.68 ± 0.1 0.78 ± 0.09 11.4 ± 1.71 0.93 ± 0.04 0.68 ± 0.1 0.98 ± 0.01

1 0.67 ± 0.05 0.76 ± 0.09 0.71 ± 0.03 22.8 ± 2.25 0.77 ± 0.04 0.76 ± 0.09 0.78 ± 0.05

2 0.67 ± 0.17 0.47 ± 0.09 0.54 ± 0.1 13.3 ± 2.58 0.77 ± 0.08 0.47 ± 0.09 0.93 ± 0.04

3 0.64 ± 0.1 0.79 ± 0.08 0.7 ± 0.07 14.5 ± 2.32 0.86 ± 0.06 0.79 ± 0.08 0.86 ± 0.05

LGBM 0.6 ± 0.05

0 0.86 ± 0.1 0.75 ± 0.1 0.8 ± 0.09 11.4 ± 1.71 0.93 ± 0.05 0.75 ± 0.1 0.97 ± 0.02

1 0.59 ± 0.07 0.62 ± 0.1 0.6 ± 0.06 22.8 ± 2.25 0.75 ± 0.03 0.62 ± 0.1 0.75 ± 0.05

2 0.45 ± 0.18 0.41 ± 0.14 0.42 ± 0.14 13.3 ± 2.58 0.72 ± 0.1 0.41 ± 0.14 0.87 ± 0.05

3 0.59 ± 0.11 0.63 ± 0.07 0.61 ± 0.07 14.5 ± 2.32 0.85 ± 0.05 0.63 ± 0.07 0.86 ± 0.06

RF 0.55 ± 0.05

0 0.81 ± 0.06 0.75 ± 0.12 0.77 ± 0.08 11.4 ± 1.71 0.92 ± 0.05 0.75 ± 0.12 0.96 ± 0.02

1 0.54 ± 0.07 0.54 ± 0.1 0.54 ± 0.06 22.8 ± 2.25 0.7 ± 0.04 0.54 ± 0.1 0.73 ± 0.05

2 0.42 ± 0.13 0.47 ± 0.14 0.43 ± 0.1 13.3 ± 2.58 0.73 ± 0.09 0.47 ± 0.14 0.82 ± 0.05

3 0.53 ± 0.14 0.5 ± 0.12 0.51 ± 0.11 14.5 ± 2.32 0.81 ± 0.05 0.5 ± 0.12 0.86 ± 0.05

GBDT 0.54 ± 0.05

0 0.77 ± 0.11 0.73 ± 0.13 0.75 ± 0.1 11.4 ± 1.71 0.92 ± 0.04 0.73 ± 0.13 0.95 ± 0.03

1 0.56 ± 0.1 0.54 ± 0.09 0.54 ± 0.06 22.8 ± 2.25 0.7 ± 0.04 0.54 ± 0.09 0.75 ± 0.06

2 0.34 ± 0.13 0.39 ± 0.16 0.36 ± 0.13 13.3 ± 2.58 0.68 ± 0.1 0.39 ± 0.16 0.8 ± 0.05

3 0.56 ± 0.14 0.54 ± 0.12 0.54 ± 0.1 14.5 ± 2.32 0.8 ± 0.05 0.54 ± 0.12 0.87 ± 0.05

SVM 0.64 ± 0.06

0 0.94 ± 0.07 0.78 ± 0.11 0.85 ± 0.07 11.4 ± 1.71 0.94 ± 0.05 0.78 ± 0.11 0.99 ± 0.01

1 0.63 ± 0.08 0.8 ± 0.09 0.7 ± 0.06 22.8 ± 2.25 0.79 ± 0.03 0.8 ± 0.09 0.72 ± 0.07

2 0.52 ± 0.19 0.2 ± 0.1 0.26 ± 0.09 13.3 ± 2.58 0.74 ± 0.08 0.2 ± 0.1 0.95 ± 0.03

3 0.57 ± 0.14 0.69 ± 0.08 0.62 ± 0.1 14.5 ± 2.32 0.85 ± 0.06 0.69 ± 0.08 0.83 ± 0.08

LR 0.65 ± 0.07

0 0.88 ± 0.11 0.74 ± 0.12 0.8 ± 0.11 11.4 ± 1.71 0.94 ± 0.04 0.74 ± 0.12 0.98 ± 0.02

1 0.63 ± 0.08 0.77 ± 0.11 0.69 ± 0.07 22.8 ± 2.25 0.8 ± 0.03 0.77 ± 0.11 0.74 ± 0.06

2 0.52 ± 0.15 0.3 ± 0.17 0.36 ± 0.11 13.3 ± 2.58 0.76 ± 0.06 0.3 ± 0.17 0.92 ± 0.05

3 0.62 ± 0.13 0.71 ± 0.1 0.66 ± 0.1 14.5 ± 2.32 0.86 ± 0.06 0.71 ± 0.1 0.86 ± 0.06

ANN 0.59 ± 0.04

0 0.94 ± 0.08 0.63 ± 0.13 0.74 ± 0.09 11.4 ± 1.71 0.94 ± 0.04 0.63 ± 0.13 0.99 ± 0.01

1 0.55 ± 0.06 0.82 ± 0.12 0.65 ± 0.03 22.8 ± 2.25 0.73 ± 0.08 0.82 ± 0.12 0.61 ± 0.1

2 0.51 ± 0.27 0.21 ± 0.17 0.26 ± 0.14 13.3 ± 2.58 0.74 ± 0.06 0.21 ± 0.17 0.95 ± 0.05

3 0.6 ± 0.15 0.62 ± 0.08 0.6 ± 0.07 14.5 ± 2.32 0.83 ± 0.05 0.62 ± 0.08 0.86 ± 0.08

TabNet 0.51 ± 0.06

0 0.59 ± 0.28 0.49 ± 0.23 0.51 ± 0.21 11.4 ± 1.71 0.82 ± 0.06 0.49 ± 0.23 0.93 ± 0.07

1 0.57 ± 0.1 0.54 ± 0.13 0.54 ± 0.1 22.8 ± 2.25 0.68 ± 0.06 0.54 ± 0.13 0.75 ± 0.13

2 0.31 ± 0.16 0.28 ± 0.15 0.28 ± 0.14 13.3 ± 2.58 0.61 ± 0.13 0.28 ± 0.15 0.84 ± 0.08

3 0.52 ± 0.13 0.67 ± 0.13 0.58 ± 0.1 14.5 ± 2.32 0.8 ± 0.07 0.67 ± 0.13 0.8 ± 0.08

DT 0.56 ± 0.07

0 0.73 ± 0.16 0.66 ± 0.16 0.68 ± 0.12 11.4 ± 1.71 0.86 ± 0.06 0.66 ± 0.16 0.94 ± 0.04

1 0.56 ± 0.1 0.65 ± 0.11 0.59 ± 0.07 22.8 ± 2.25 0.72 ± 0.08 0.65 ± 0.11 0.69 ± 0.12

2 0.38 ± 0.15 0.28 ± 0.18 0.3 ± 0.15 13.3 ± 2.58 0.66 ± 0.08 0.28 ± 0.18 0.89 ± 0.07

3 0.58 ± 0.11 0.61 ± 0.17 0.59 ± 0.13 14.5 ± 2.32 0.81 ± 0.06 0.61 ± 0.17 0.86 ± 0.07
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pharmacokinetic studies. However, if the data are insuf-
ficient or cannot support a pharmacokinetic modeling 
technique, the model is erroneous [30]. Recently, it has 
been noticed that there is growing interest in novel sta-
tistical techniques, such as population pharmacokinetic 
(popPK) analysis. Nonlinear mixed-effects modeling 
(NONMEM) is the most popular method for this type 
of pharmacokinetic data analysis [31, 32]. Nevertheless, 
the PPK model is relatively inflexible to apply because 
of the explicit mathematical model used, and adding or 
removing a parameter may be challenging [33]. Machine 
learning, in contrast, is renowned for its self-organiza-
tional and learning skills, which let computers learn from 
“experience” without being explicitly taught [34, 35]. It 
is a form of artificial intelligence that enables systems to 
examine a wide range of data gathered from electronic 
health records (EHRs) and automatically learn from them 
using cutting-edge statistical and probabilistic techniques 
to make more precise predictions by building clever 
and efficient predictive models [36]. Recent years have 

seen a significant increase in study interest in the use of 
machine learning for clinical drug therapies, which leads 
to an increasingly significant impact on the development 
of personalized dosing, particularly in the choice of drug 
dose [37]. A few studies on the use of machine learning 
to forecast drug doses or blood concentrations have been 
reported [38–43].

In this study, we innovatively used machine learn-
ing and deep learning techniques to predict quetiapine 
dose based on real-world data. Machine learning mod-
els can be updated by automatically extracting EHR data 
and continuously monitoring physiological data, and are 

Table 4 Importance score ranking of variables by XGBoost

Variable Importance

Quetiapine TDM value 0.41 ± 0.02

AGE 0.23 ± 0.01

MCHC 0.19 ± 0.01

TBA 0.18 ± 0.01

Fig. 3 ROC curve at different doses. Class 0 indicates patients with daily dose of 100 mg, Class 1 indicates patients with daily dose of 200 mg, Class 
2 indicates patients with daily dose of 300 mg, and Class 3 indicates patients with daily dose of 400 mg

Fig. 4 Confusion matrix in the CatBoost model
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effective approaches to modeling real-world data. The 
commonly used PPK models have some limitations, such 
as difficulty in modeling, less consideration of influencing 
factors, and low accuracy. Herein, multi-level data min-
ing was conducted by machine learning to screen out a 
variety of real-world influencing factors, to construct 
a more practical and accurate dose prediction model. 
Therefore, the combination of machine learning and 
dose prediction can help to improve the level of precision 
medicine in clinical.

We considered multiple algorithms for model estab-
lishment. DT is simple and easy to understand, but there 
is a risk of overfitting. RF uses bagging sampling, random 
attribute selection and model ensemble to address exces-
sive risk decision tree learning. On the basis of RF, GBDT 
combined with Boosting establishes the connections 
between trees, making the forest an ordered collective 
decision-making system. XGBoost goes a step further 
than GBDT by adding regular terms to the objective 
function at each iteration to reduce the risk of overfitting, 
and it can integrate multiple decision trees to achieve the 
goal of regression or classification [44]. For models such 
as ANN and XGBoost, they perform quite well on large-
scale datasets. However, good prediction results can also 
be obtained on small data sets by adjusting hyperparam-
eters to avoid overfitting. Each algorithm has its advan-
tages and disadvantages, the performance of different 
algorithms depends on the characteristics of the dataset, 
and the final selection of the algorithm is based on the 
computational results. Herein, we used grid search com-
bined with tenfold cross validation to find the optimal 
hyperparameters and avoid overfitting to obtain the opti-
mal model.

The significant predictor for predicting quetiapine 
dose is the quetiapine concentration. Several studies on 
psychotic disorders have identified that dose affects que-
tiapine concentration. According to a review, quetiapine 
had linear pharmacokinetics in the studied dose range, 
and had predictable pharmacokinetics [45]. Albantakis 
et al. have also quantified the relationship between daily 
dose and serum concentration in children and adoles-
cents with psychotic and mood disorders. Between the 
daily dose and quetiapine serum levels (from trough sam-
ples) in the entire sample, they discovered a statistically 
significant, positive, but flimsy linear connection [46]. 
Among the crucial parameters we chose for our study’s 
prediction model, the concentration was the most promi-
nent influencing variable, and it was positively associ-
ated with quetiapine dose, which was in line with earlier 
research.

The effect of age on the metabolism of second-gener-
ation antipsychotics has been described in a few prior 
investigations. One study revealed that dose-adjusted 

concentrations of quetiapine increased by an average of 
13% per decade from the age of 20 [47], while another 
found that the average concentrations were 67% higher in 
patients over the age of 70 compared to those between 
the ages of 18 and 69 [48]. Another study found that 
patients aged 65 and above had 50% higher plasma con-
centrations than younger patients [49]. For children and 
adolescents (10–17  years of age), at steady state, the 
pharmacokinetics of the parent compound were similar 
to adults. However, when adjusted for dose and weight, 
AUC and Cmax of the parent compound were 41% and 
39% lower, respectively, in children and adolescents 
than in adults [50, 51]. In our study, patients older than 
60  years were excluded because of the small number of 
senior patients that model can only learn little informa-
tion. The ability of the elderly to metabolize and excrete 
drugs may be reduced, which may lead to the accumu-
lation of drugs in the body, and liver and kidney func-
tion may also be affected. As a result, older people tend 
to require smaller doses of drugs. In this study, age is 
one of the most important feature in the final predic-
tion model. In the following study, we will include more 
patients older than 60  years in the model to verify its 
generalizability.

In addition, some previous studies have indicated that 
low MCHC increases the likelihood of developing patho-
logical disorders, such as poor functional status, demen-
tia, and cognitive decline as well as morbidity and death 
[50–53]. Poor functional status, such as decreased ability 
to carry oxygen, may lead to changes in the pharmacoki-
netics of quetiapine and thus affect the dose of quetia-
pine. Meanwhile, because it is a measure determined 
from the haemoglobin concentration (HGB) divided by 
mean cellular volume (MCV) and red blood cell count 
(RBC), the MCHC is a good indicator to detect anae-
mia [54]. Depending on the demographic data inves-
tigated, anemia, a condition marked by a deficiency in 
hemoglobin in the blood, affects an estimated percentage 
from 2.9% to 60.1% of older persons [55]. Many illnesses, 
including malnutrition, obesity, cancer, chronic renal 
disease, are linked to anemic people, which may lead to 
changes in the pharmacokinetics of quetiapine and thus 
affect its dose.

Furthermore, hepatic metabolism accounts for the 
majority of quetiapine elimination, and less than 1% of 
the amount taken orally after a single administration 
was excreted unaltered, showing quetiapine is rapidly 
metabolized [56, 57]. According to studies, people with 
liver disease (n = 8) had a 30% lower mean oral clearance 
of quetiapine than patients with normal liver function. 
Two of 8 patients with hepatic impairment experienced 
a threefold increase in AUC and Cmax compared with 
healthy patients [56, 57]. TBA is closely related to liver 
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function and abnormally high value suggests poor liver 
health. Abnormal TBA levels indicate that patients may 
have impaired liver function, which may inhibit metabo-
lism of quetiapine in the liver, resulting in high quetia-
pine concentration and dose adjustment may be needed. 
In one word, quetiapine TDM value, age, MCHC, and 
TBA, show important associations with quetiapine dose, 
which could be used as the predictors in the individual-
ized medication model of quetiapine, to help clinicians 
choose the reasonable regimen.

In different dose groups, according to Additional 
file 1: Figure S1, the blood concentration points of some 
patients with a dose of 200 mg are extreme outliers, and 
there is a crossover with the upper quartile concentra-
tion points of patients with a dose of 400 mg. Also, there 
is a crossover between the upper quartile concentration 
points of patients with a dose of 200  mg and the lower 
quartile concentration points of patients with a dose of 
300 mg. All the situations of crossover may affect the cli-
nician’s regimen choice and the prediction outcome in 
200 mg group. Therefore, the AUROC for 200 mg group 
is lower than other dose groups.

Our model has some notable flaws. First, due to the 
availability of data, such as extremely uneven distribu-
tion, lots of missing values and so on, some variables 
were excluded. A future goal is to improve the model 
when a great deal of samples may be used to thoroughly 
study the factors. Second, our model has not been suffi-
ciently tested on additional data sets. By using the model 
on a larger pooled data set, future studies could delve 
deeper into these problems. The identification of more 
potent predictors and the improvement of prediction 
accuracy are likely to result from the input of additional 
data. Third, due to the constraints of the test conditions, 
several pertinent patient characteristics (such as CYP450 
polymorphisms) were excluded. Last, in this study, some 
underlying confounding factors were not analyzed, such 
as the using duration of quetiapine, prior use of antip-
sychotics, mood stabilizers and antidepressants before 
admission, drug combination of benzodiazepines, anxi-
olytics, and lithium, and complex clinical situations 
including severity of illness and multiple complications 
[58]. There is a drawback of real-world study that there 
exist some unknown confounders from real clinical set-
tings. In future study, we expect to apply propensity score 
matching and stratified analysis for reducing confound-
ing bias.

According to our knowledge, this research is the ini-
tial to use XGBoost algorithm for estimating the dose of 
quetiapine for patients with depression. Our study could 
identify important influencing variables for quetiapine 
dose by maximizing the use of real-world data to support 
quetiapine dose adjustments for each patient. In clinical 

applications, we expect to develop a web tool for drug 
dose calculation that can automatically generate recom-
mended quetiapine doses by entering the values of key 
variables (such as quetiapine TDM value, age, MCHC, and 
TBA) based on electronic medical records, blood tests and 
TDM, providing clinical decision support to improve ther-
apeutic response and reduce patient’s burden.

Conclusion
In this work, machine learning techniques are used 
for the first time to estimate the dose of quetiapine for 
patients with depression, which is important and valuable 
for the clinical drug recommendations. Our model was 
designed as a real-time assisting clinical decision sup-
port tool to balance the effect of quetiapine dose on both 
treatment efficacy and toxicity outcomes, and to maxi-
mize the benefit of treatment for each patient. Therefore, 
our study fills the gap in this research field.
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